
IJSRST1622105 | Received: 01 April 2016 | Accepted: 15 April 2016 | March-April 2016 [(2)2: 166-173]

© 2016 IJSRST | Volume 2 | Issue 2 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

 166

Implemented Mitigation of Security Attack in Android

Application Using Pin Tool
Sisara Lalji C., Prof. B. V. Buddhadev

Department of Information Technology, Shantilal Shah Government Engineering College, Bhavnagar, Gujarat, India

ABSTRACT

The popularity and adoption of smartphones has greatly stimulated the spread of mobile malware, especially on the

popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective

solutions. In the past few years, mobile devices (smartphones, PDAs) have seen both their computational power and

their data connectivity rise to a level nearly equivalent to that available on small desktop computers, while becoming

ubiquitous. On the downside, these mobile devices are now an extremely attractive target for large-scale security

attacks. Mobile device middleware is thus experiencing an increased focus on attempts to mitigate potential security

compromises. In particular, Android incorporates by design many well-known security features such as privilege

separation. In this thesis the Android security model and some potential weaknesses of the model is described.

Thesis provides taxonomy of attacks to the platform demonstrated by real attacks that in the end guarantee

privileged access to the device and mitigation technique for the same attack would be proposed. The result analysis

and testing would be done on mitigation technique.

Keywords: Dynamic Analysis, Runtime, Binary Instrumentation, Pin, Pin tool, Intel, Just-in-time compiler, security

attack, android Attack.

I. INTRODUCTION

Instrumentation is a simple technique for inserting any

extra line of code in to an application to observe its

behavior. It can be performed at various stages – inside

the source code, at compile time, post link time, or even

at run time. Source Code Instrumentation is a way to

instrument source programs and Binary Instrumentation

is to instrument binary executable directly Static binary

instrumentation (SBI) occurs before the program is run

phase, a phase in which we can rewrite executable code

or object code. Dynamic binary instrumentation (DBI) is

done at run time.

Program Analysis

Static Analysis and Dynamic Analysis:

Static analysis is the process of analyzing the source

code or machine code of the program without need of

running it Dynamic analysis is the process of analyzing

program as it executes or at the runtime.

Source Analysis and Binary Analysis:

Source analysis is the process of analyzing programs at

the level of source code. Source analysis are generally

done for the points of programming language constructs

such as expressions, statements, functions, and variables.

Binary analysis is the process of analyzing programs at

the level of machine code, that stored either as object

code (pre-linking) or executable code (post-linking). In

this category, we have analysis that are performed at the

level of executable intermediate representations, such as

byte-codes, that runs on a particular virtual machine.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

167

Binary analysis are generally done for the points

machine entities, such as registers, memory locations,

procedures, and instructions.

Pin :

Pin has been the framework of choice for researchers

working on program analysis and related tools. It can

be used for several purposes, but mostly for program

analysis (memory allocation analysis, error detection,

performance profiling, etc...) and for architectural study

(processor and cache simulation, trace collection, etc…).

PIN is a dynamic binary instrumentation engine or

framework. Pin is used for the instrumentation of

software programs. It supports many platforms like

Windows, Linux, Mac OS and Android executable for

IA-32, and Intel(R) 64[4]. The Pin allows a programmer

to insert any arbitrary code (written in C or C++) at

arbitrary places in the executable (run time of any

program). The code is added dynamically while the

executable (program) is in the running phase. The input

to this compiler is not byte code, but a regular

executable. Pin dynamically re-compiles the application

during execution. The Pin kit includes many tools (they

can be found at: pin-w-x-y-android/source/tools). The

tools are provided as source files .Pin provides the

framework and API.

Pin Architecture:

 Figure 1. Pin architecture [1]

Pin consists of a virtual machine (VM), a code cache,

and an instrumentation API invoked by Pin tools. The

VM consists of a just-in-time compiler (JIT), an

emulator, and a dispatcher. After Pin control of the

application, the VM coordinates its components to

execute the application. The JIT compiles and

instruments application code, which is then launched by

the dispatcher. The compiled code is stored in the code

cache. The emulator interprets instructions that cannot

be executed directly. It is used for system calls which

require special handling from the VM. (E.g. system calls)

II. METHODS AND MATERIAL

A. Pin Tool

Pin tool is the instrumentation program. Pin tools run on

Pin to perform meaningful tasks. The inscount pin tool is

used to find out the number of instructions in the

running program.

Instrumentation consists of two components:

1. A mechanism that decides where and what code is

inserted

2. The code to execute at insertion points

These two components are instrumentation and analysis

code.

B. Android

Android is a powerful Operating System supporting a

large number of applications in Smart Phones. These

applications make life more comfortable and advanced

for the users. Hardware’s that support Android are

mainly based on ARM architecture platform. Android

comes with an Android market which is an online

software store. It was developed by Google. It allows

Android users to select, and download applications

developed by third party developers and use them. There

are around 2.0 lack+ games, application and widgets

available on the market for users. Android applications

are written in java programming language. Android is

available as open source for developers to develop

applications which can be further used for selling in

android market. There are around 200000 applications

developed for android with over 3 billion+ downloads.

Android relies on Linux version 2.6 for core system

services such as security, memory management, process

management, network stack, and driver model. For

software development, Android provides Android SDK

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

168

(Software development kit). Read more about open

source software.

Android uses following Tools:

Eclipse, ADT Plugins, SDK toolkit, AVD toolkit.

Android Architecture

Figure 2. Android Architecture [3]

Android Activity Lifecycle

Figure 3. Android Activity Lifecycle [2]

C. Mitigation

Mitigation is the effort to reduce loss life and property

by Lessing the impact of disasters.

Figure 4. Attack Classes

No physical access

Attack circumstances where it is impossible to gain

physical access to a user’s device. Then the attacker

must get the user to perform actions on the attacker’s

behalf. Such remote attacks commonly rely heavily on

social engineering [5]. To achieve the appropriate initial

access to the user’s device an attacker must get some

malicious software running on the device. To run code

remotely on a user’s device, the attacker typically must

convince the user to either download a malicious

application or access malicious content via one of the

applications already installed on the device. If the

attacker can exploit a vulnerability on the user’s device,

then this access may be used further to gain privileged

access.

Physical access with ADB enabled

If the attacker finds a device left unattended, yet

obstructed via a password or screen lock, the attacker

may be able to exploit the device through the Android

Developer Bridge.

Physical access without ADB enabled

If the attacker finds an obstructed Android device left

unattended, but is unable to use the ADB service, the

attacker may still gain privileged access via recovery

boot.

Physical access on unobstructed device

In some cases the attacker may actually have access to a

device without a password protected screen lock. Such a

situation allows the attacker to actually leverage any

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

169

other attack method since the attacker can choose to

install applications, visit malicious websites, enable

ADB on the device, etc.

Figure 5. Type of Mitigation

Reduce the Patch Cycle Length

Attackers exploit some flaw in the operating system to

gain root privileges. Reducing the patch cycle length

would mitigate these threats with greater effectiveness.

Zero-day exploits would still be possible, however the

common lingering threat will be reduced. While Google

has already demonstrated willingness to act quickly with

out of band patch releases in reaction to certain attacks

(e.g., [6]), reducing complete patch cycles is a more

difficult problem. Indeed, manufacturers make changes

to the Android source to create a competitive advantage.

A fundamental separation between the core of Android

and manufacturer modifications should be established.

Privileged Applications

To mitigate application attacks that take advantage of

Android’s permission model many solutions have been

proposed. Propose lightweight application certification

comparing the requested permissions of an application

to a set of security rules. If the application does not pass

any of the security rules, then possible malicious activity

is brought to the attention of the user.

For example, Google could validate that certain software

vendors create security software and grant applications

created by these vendors additional API functionality.

Applications signed by such a vendor could, for example,

have read access to the file system in order to facilitate

anti-virus scanning beyond limited scope typically

granted to applications. Such a configuration would

allow users to install security related applications

without having to first root their device. Because

privileged applications will have unrestricted access to

the device, these applications should be certified by

some governing entity before they can be downloaded.

This certification process could also help mitigate some

weaknesses of an unmodulated market. With access to

trusted security tools, users would be able to monitor

untrusted applications and provide appropriate feedback.

Leveraging Existing Security Technologies:

There are several existing operating system security

enhancements that could be ported to Android.

Instrumenting Android to monitor applications and

understand how they interact with the user’s sensitive

information. A realized implementation of Taint Droid

could give users real-time information about how an

application uses the permissions it is granted. Generally,

operating system level software modifications such as

adding a firewall to Android involve porting existing

technology to the Android kernel and creating an

application to facilitation administration.

Authenticated Downloads:

Once an attacker has physical access to a device, adding

malicious applications becomes simple and quick by

posing as the legitimate user and downloading them

from the Android Market. To ensure downloads are

made only by the user, the market should require

authentication before every transaction, similar to the

model currently used by the iPhone.

Authenticated ADB:

Because of the power given through the ADB, it should

not be accessible to unauthorized users. Android should

require the device to be unlocked before ADB can be

used. Any legitimate user should be able to unlock the

device and once the connection is made, the session

could be maintained by preventing the screen from

locking while it is connected via USB. With ADB

authentication, the attacker no longer has a backdoor to

bypass the lock mechanism’s authentication process,

mitigating the ADB attack against obstructed devices.

Trusted Platform Module:

To secure a device in a managed model scenario a root

of trust must be established. Using a Trusted Platform

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

170

Module (TPM) provides a ground truth on which device

security could be built, providing authentication of

device state. Using a TPM would mitigate the recovery

image attack, which relies on the ability to change the

boot image. Assuming signed byte code and

authentication of the boot image, updates running

unauthorized code would become extremely difficult.

III. LITERATURE REVIEW

1. Pin: Building Customized Program Analysis

Tools with Dynamic Instrumentation

In this Paper they have described that pin is robust and

powerful software instrumentation tool for program

analysis tasks such as

1) Profiling

2) Performance Evaluation

3) Bug Detection

2. Behavioral Analysis of Android Applications

Using Automated Instrumentation

In this paper, they present efforts on effective security

inspection mechanisms for identification of malicious

applications for Android mobile applications.

1) Count the number of Instruction in the original

Application.

2) Count the number of Instruction in the Malicious

Application.

3) If Number of Instruction are different then know

there are some extra line of code in the application

code

3. All Your Droid Are Belong to Us: A Survey of

Current Android Attacks

In this paper we look to Android as a specific instance of

mobile computing. We first discuss the Android security

model and some potential weaknesses of the model. We

then provide taxonomy of attacks to the platform

demonstrated by real attacks that in the end guarantee

privileged access to the device. Where possible, we also

propose mitigations for the identified vulnerabilities.

4. Analysis and Research of System Security Based

on Android

In this paper, it has analysis Android system's security

mechanisms with widely used in mobile platforms. It

has separately introduced its system architecture,

security mechanism and safety problems. Through it has

analysis Android security mechanisms and its

components; it has set to the Android security, safety

mechanism side, system security and data security. It has

promoted system security to system permission. At the

same time it analysis the Android security risks, it has

deeply researched the attack based on Linux kernel. It

has proposed security mechanisms based on SELinux

policy theory to ensure system security on application

program framework layer.

5. Patch droid: scalable third party security patches

for android devices.

In this paper they have presented patch droid, a System

to patch security vulnerabilities on legacy android

Android devices, Patch droid uses dynamic

instrumentation techniques to patch vulnerabilities in

memory, and uses a path distribution service so that

patches only have to be created once and can be

deployed on every devices. Because patches are injected

directly into the processes, Patch droid does not need to

flash or modify system partitions or binaries, making it

universally deployable even on tightly controlled

devices.

Proposed System

6. Mitigation of security attack in android

application using pin tool

Figure 6. Instruction count in this android application

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

171

Figure 7. For Example: Attack

IV. RESULT AND DISCUSSION

Getting the system ready

Table 2. System Specification

Installation on Ubuntu

Figure 8. Install ubuntu in my system

Install Android SDK and AVD, Eclipse

Start eclipse and AVD.

Create calculator android application in eclipse.

There are two values add, mul, sub, div.

Figure 9. Install Android SDK and AVD, Eclipse in

Ubuntu

Before Security attack on calculator application

Create calculator android application and the privilege

escalation type attack will be performed.

Figure 10. Before attack addition, subtraction

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

172

Figure 11. Before attack addition, subtraction

After mitigation Security attack on calculator application

Figure 12. After mitigate attack in addition, subtraction

Figure 13. After mitigate attack in multiplication

division

Implement pin framework on system

Start the terminal and use to command

Run on pin this command. /pin –version and. /pin --

/system/bin/ls.

Figure 14. The pin framework version on android avd

on system

Count the number of instruction for calculator

application using pin tool

Inscount pin tool code used for count the number of

instruction in calculator application

Run this code on pin framework.

Figure 15 .Output of inscount pin tool

We have compiled the inscount pin tool in the android

avd and then attached it to the running android

application. The application we used is

CalculatorApp.apk. As we can see the image that the

directory of the bin in the android avd contains a file

name “inscount.out”. This file is made when we have

compiled and attached the pin tool to the application

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

173

process. When we open that file we see a value

”484677” which means that there are total 484677

instructions during the running of the Calculator

Application.

V. CONCLUSION

We have presented a method of mitigation of security

attack in Android Applications using Pin tool which

allows the user to instrument an Android Application.

Instrumented code alters the behavior of the original

application and the attacker can’t find the right way to

inject his own code into the running Application.

Moreover instrumentation can also be used as a

protecting weapon. So here we have used pin tool to

mitigation of security attack in android application.

VI. FUTURE WORK

In future on any android application, the attack will be

performed. Using pin tool, its mitigation will also be

provided. Any types of attack will be done and

mitigation technique will be developed to protect

application from any attack. Any android application

count the number of instructions and API read and write

type and run on pin framework.

VII. REFERENCES

[1] Chi-Keung Luk, Robert Cohn, Robert Muth,

Harish Patil, Artur Klauser, Geoff Lowney ,

Steven Wallace, Vijay Janapa Reddi, Kim

Hazelwood,"Pin: Building Customized Program

Analysis Tools with Dynamic Instrumentation"

PLDI '05 Proceedings of the 2005 ACM

SIGPLAN conference on Programming

language design and implementation Pages 190-

200. and www.pintool.org

[2] Android Kernel Issues.http://www.kandroid.org.

[3] Intel. IA-32 Intel Architecture Software

Developer’s Manual Vols 1-3, 2003.

[4] Just because it’s signed doesn’t mean it isn’t

spying on you. http://www.f-

secure.com/weblog/ archives/00001190.html,

May 2007.

[5] J. Oberheide. Remote kill and install on google

android.

http://jon.oberheide.org/blog/2010/06/25/remote

-kill-and-installon- google-android/

[6] http://www.herongyang.com/Android/Activity-

Introduction-of-Activity-Lifecycle.html

